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This paper provides a step forwards the construction and documentation of the frequency
equations and the characteristic functions of a general three-degrees-of-freedom theory that
describes the plane motion of shear deformable elastic beams. The governing equations of
this shear deformable beam theory (G3DOFBT) involve a general shape function of the
transverse beam co-ordinate parameter, the a posteriori choice of which speci"es the
distribution of the transverse shear strain or stress along the beam thickness. Di!erent
choices of this shape function produce, as particular cases, the corresponding governing
equations of di!erent beam theories. These include the di!erential equations of the
Euler}Bernoulli beam theory as well as the corresponding equations of the shear deformable
theories due to Timoshenko and Bickford. Other examples can also be found by considering
the shear deformable beam theories produced as one-dimensional versions of relevant
re"ned plate theories. Since corresponding developments of the Timoshenko beam theory
are already available in the literature, the Bickford theory is considered as the pilot beam
theory in this study. The frequency equations, the characteristic functions and the
orthogonality conditions of this theory, which assumes a through-thickness parabolic
distribution of the transverse shear strain or stress, are constructed analytically for all the
classical sets of boundary conditions applied at the beam ends. Some preliminary numerical
results are also presented and discussed for beams having both their ends simply supported
or clamped.

( 2001 Academic Press
1. INTRODUCTION

The characteristic functions (normal modes) of a homogeneous "nite beam that vibrates in
accordance with the hypotheses of the Euler}Bernoulli beam theory are well documented in
the literature and adequately classi"ed for a variety of end boundary conditions. Reference
[1], for instance, gives detailed expressions as well as the most important properties of
these sets of orthogonal functions for beams subjected to 10 di!erent types of end supports.
These sets of characteristic functions have played an important role in the understanding of
0022-460X/01/170215#31 $35.00/0 ( 2001 Academic Press
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the dynamic behaviour of thin elastic beams made up of homogeneous isotropic material.
Apart from this fundamental role, they are also of particular importance in the static and
dynamic analysis of thin elastic structural elements, the mechanical behaviour of which is
adequately described by the governing partial di!erential equations of classical plate or
shell theories (see, for instance, references [2}5]).

As far as the Timoshenko beam theory [6, 7] is concerned, an adequate construction of
its frequency equations and characteristic functions has already been presented by Huang
[8], for six di!erent types of end boundary conditions, whereas an additional, pure shear
mode, for simply}simply supported Timoshenko beams that vibrate without transverse
de#ection, was identi"ed in reference [9]. It should, however, be noted that apart from
a rather straightforward recent application [10], the Timoshenko characteristic functions
have not been used in the literature to the same extent as the Euler}Bernoulli beam
functions. It is noted in this respect that, after a slight approximation was applied to the
Timoshenko beam ordinary di!erential operator, a simpler form of relevant sets of
characteristic functions was presented by Abramovich [11].

This paper is considered as a step towards the generalization of a certain but basic class of
re"ned theories that describe the plane #exural motion of shear deformable elastic beams as
well as the construction and the documentation of their frequency equations and
characteristic functions. The proposed developments are consistent with a general
three-degrees-of-freedom beam theory (G3DOFBT), the governing equations of which can
be obtained by specializing the equations of the corresponding shear deformable plate
theory [12] in one dimension. For application purposes, however, only #exural beam
motions are considered in this paper. Hence, a further specialization of those
one-dimensional equations is considered, which is consistent with the broad but special
class of structural elements that involve homogeneous or symmetric laminated beams. It
should be noted in this respect that frequency equations and characteristic functions of
homogeneous beams only are derived in this study. As far as more complicated material
arrangements are concerned, corresponding results will be reported in future publications.

For the purpose of completeness and self-su$ciency, all the equations and the relevant
quotations required for an adequate use of the G3DOFBT are initially outlined in
this paper as brie#y as possible. They involve a general shape function of the beam
transverse co-ordinate parameter, the a posteriori choice of which speci"es the distribution
of the transverse shear strain or stress across the beam thickness. Di!erent choices of this
shape function produce, as particular cases, the corresponding governing equations of
di!erent beam theories. These include, for example, the di!erential equations of the
Euler}Bernoulli theory or the shear deformable theories due to Timoshenko [6, 7] and
Bickford [13].

Contrary to the Euler}Bernoulli or the Timoshenko beam theories, which are quoted
by choosing a constant (zero) or a linear shape function in the G3DOFBT, respectively, any
other (non-linear) choice of that shape function converts the fourth order operator involved
into a sixth order di!erential operator. The Bickford beam theory [13] is the earliest
and perhaps the simplest relevant example and is therefore considered as the pilot
beam theory in this study. Other examples can, however, also be found by considering
the shear deformable beam theories produced as one-dimensional versions of relevant
re"ned plate theories (see, for instance, references [14}16]). As far as Bickford's theory
is concerned, the frequency equations as well as the corresponding characteristic fun-
ctions are constructed analytically for all the 10 classical sets of boundary conditions
that are usually applied at the beam ends. Some preliminary numerical results are
also presented and discussed for beams having both their ends simply supported or
clamped.
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2. GENERALIZATION OF SHEAR DEFORMABLE BEAM THEORIES
THAT USE THREE DEGREES OF FREEDOM (G3DOFBT)

Consider an elastic beam of length ¸ and thickness h and assume that its middle-axis
coincides with the Ox-axis of a Cartesian co-ordinate system Oxyz (the positive Oz-axis is
directed upwards). Consider also, for convenience, that the cross-section of the beam has
a rectangular shape with unit width. Assuming further that the beam is deformed in the Oxz
plane only, the G3DOFBT formulation begins with the following displacement approximation:

; (x, y, z, t)"u (x, t)!zw
,x
#/(z)u

1
(x, t),

=(x, y, z, t)"w(x, t).
(1)

In the usual manner, this displacement approximation assumes plane strain conditions and
therefore neglects the Poisson ratio e!ects in the normal to the x}z plane direction. At this
stage, no particular form is assigned to the function / (z), though it is assumed to have
dimensions of length. Moreover, by enforcing u to represent the in-plane displacement of
the beam middle axis and u

1
to be the value of the transverse shear strain on the plate

middle axis, further constraints might be imposed on / (z). Although both of these are only
potential requirements, and as such might well be ignored, they impose the following
constraints on / (z) and its derivative [see equations (3) and (4)]:
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The displacement approximation (1) yields the following non-zero strain components:
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Among the two kinds of the appearing middle-plane strain components, the in-plane
component, denoted by a superscript &&c'' is identical with its Euler}Bernoulli theory
counterpart. The additional component denoted with a superscript &&a'' is purely due to
shear deformation e!ects and, after the choice /@ (0)"1, yields the value of the transverse
shear strain, c

xz
, on the beam middle axis. It then becomes evident that the derivative of the

general function / (z) dictates the &&shape'' of the transverse shear strains along the plate
thickness. Similarly, two kinds of middle-axis curvatures occur; the one denoted with
a superscript &&c'' is again identical to its Euler}Bernoulli theory counterpart and the
additional one is again due to purely shear deformation e!ects.

G3DOFBT still makes use of the conventional force and moment resultants,

(Nc, Mc )"P
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p
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(1, z) dz, (5)

but, on the basis of the variationally consistent vectorial procedure described in reference
[12], it associates to them the following additional force and moment resultants:
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The equations of motion can then be obtained either variationally or vectorially [12].
Assuming that the beam lateral boundaries (z"$h/2) are free of external tractions, these
equations are given, in terms of force and moment resultants, as follows:
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where the inertia coe$cients which appear are de"ned as follows:
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Additional to the equations of motion (7), the variational approach (Hamilton's principle)
also yields all possible sets of variationally consistent boundary conditions that an be
applied on the beam ends (x"0, ¸), namely,

u or Nc prescribed, (9a)
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prescribed, (9b)

w
,x

or Mc prescribed, (9c)

u
1

or Ma prescribed. (9d)

Note should be made of the fact that the application of Hamilton's principle reveals three
extra rotatory inertia terms in the natural boundary condition (9b). Since such inertia terms
do not occur during the variational formulation of the equations of motion and the
corresponding boundary conditions of three-dimensional elasticity, the physical meaning of
their appearance in the natural boundary condition (9b) is not obvious. Hence, no evident
reason could suggest the existence of boundary inertial terms, during the traditional
formulation of an approximate beam theory by means of an engineering vectorial approach,
when the transverse movement restriction is removed at an end of the beam (wO0). The
variational formulation (Hamilton's principle) of a beam model reveals, however, that
consideration of these inertial terms is essential in making the natural boundary condition
(9b) dynamically equivalent to its corresponding three-dimensional counterpart (q

xz
prescribed). It should be noted, in this connection, that several kinds of such discrepancies
between the vectorial and the variational formulation of one-dimensional beam or
two-dimensional plate and shell mathematical models have been revealed in recent years.
Some of them have already been resolved [12, 17], though the one described in this
investigation is among the discrepancies (e.g., reference [18]) that may need further
consideration and study.

As far as homogeneous isotropic beams are concerned, the afore-mentioned boundary
inertia terms were also obtained by Bickford [13] during the variational development of his
so-called parabolic shear deformable beam theory. Moreover, the "rst of these terms was
also obtained during the variational formulation of the Euler}Bernoulli theory [19], in
which case the second term that includes u

1
is obviously zero whereas the third term is

nulli"ed by virtue de"nition (8a). The generality of the present formulation further reveals,
however, that such boundary inertia terms are also associated with all re"ned shear
deformable beam theories. However, as was suggested by one of the referees and is hence
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shown in Appendix A, these terms can be removed from the equations of the Timoshenko
beam theory.

After the constitution of the elastic beam is decided, the three partial di!erential
equations (7) can be expressed in terms of the same number of main unknown displacement
functions (u, w and u

1
). With this purpose in mind, it can next be assumed that the elastic

beam considered is most generally composed of an arbitrary number, N, of linearly elastic
specially orthotropic layers, which are perfectly bonded together. Hooke's law then suggests
that the following stress}strain relations hold in the kth layer (k"1, 2,2,N):
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where Q's are the well-known reduced elastic sti!nesses [20]. Hence, the introduction of
equations (10) and (3) into equations (5) and (6) yield the following constitutive equations:
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where the rigidities which appear are de"ned as follows:
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Finally, upon inserting equations (4) and (11) into equation (7), the following set of
simultaneous partial di!erential equations are obtained:
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for the three unknown degrees of freedom, u, u
1

and w. It can be veri"ed (by setting v"w
,x

)
that, in accordance with the number (four) of the end boundary conditions (9), equation (13)
form an eighth order set of simultaneous di!erential equations, with respect to the spatial
co-ordinate parameter.

It should be "nally noted that, in the case of the laminated version of the Euler}Bernoulli
theory (/"u

1
"0), the last of equation (7) becomes an identity. This means that the last of

equation (13) should be dropped, thus leaving only two di!erential equations for the same
number of main unknown functions (u and w). The last of the boundary conditions (9d)
becomes also redundant (u

1
"0, Ma"Mc) and, as a result, the number (three) of the

remaining boundary conditions matches the order (six) of the set of the two remaining
simultaneous di!erential equations (13a and b).

3. HOMOGENEOUS AND SYMMETRICALLY LAMINATED BEAMS

Next assume that the elastic beam considered is made up of an arbitrary but odd number
of specially orthotropic layers, which are symmetrically arranged with respect to the beam



220 K. P. SOLDATOS AND C. SOPHOCLEOUS
middle axis (a homogeneous, linearly elastic beam is a particular case (N"1) of such
a symmetric material lay up). Since the #exural dynamic behaviour of such a beam is
uncoupled from its corresponding in-plane behaviour, only an odd choice of the shape
function /(z) can from now on be associated with the governing equations of the
G3DOFBT. This makes it clear that the Timoshenko shape function (A.1) as well as the
Bickford shape function [13], namely,

/ (z)"zA1!
4z2

3h2B, (14)

are both acceptable with regard to the dynamic analysis of homogeneous and symmetrically
laminated elastic beams.

It can then easily be veri"ed that equations (8) and (12a) yield
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As a result, equation (13a), which is mainly related to the axial dynamic behaviour of the
beam, uncouples from the #exural equations (13b, c). These are then obtained in the
following form:
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It can similarly be veri"ed that the "rst of the boundary conditions (9) uncouples from the
remaining three boundary conditions, which can produce all the variational consistent sets
of end boundary conditions that are associated with the beam #exural motion. It can
further be veri"ed (by setting v"w

,x
) that, in accordance with the number (three) of the

remaining end boundary conditions, equation (16) forms a sixth order set of simultaneous
di!erential equations, with respect to the spatial co-ordinate.

In the case of the Euler}Bernoulli theory (/"u
1
"0), the last of equations (16) as well as

the last of the boundary conditions (9) are again dropped. This then leaves the fourth order
di!erential equation (16a) as the only equation of motion, the solution of which, in
conjunction with the remaining variationally consistent boundary conditions (9b, c), will
determine the single unknown function, w. The corresponding, widely known equations of
the Euler}Bernoulli theory are then obtained by further dropping the rotatory inertia terms
o
2
w
,xx

and o
2
w

,x
from the di!erential equation (16a) and the boundary condition (9c)

respectively. As already mentioned, however, the appearance of these terms is dictated by
energy considerations inasmuch as is due to the variationally consistent manner in which
the beam governing equations were derived (see also reference [19]).

Solutions of equation (16) that represent free harmonic vibrations with vibration frequency
u will be sought in section 6 by means of the following non-dimensional parameters:
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Introduction of these parameters into equation (16) yield the following set of simultaneous
ordinary di!erential equations:
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where a prime denotes ordinary di!erentiation with respect to m and
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Equation (18) can be uncoupled to give
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where v stands for both wN and uN .

4. ORTHOGONALITY CONDITIONS FOR HOMOGENEOUS AND
SYMMETRICALLY LAMINATED BEAMS

In order to obtain the orthogonality conditions associated with the #exural normal
modes of a homogeneous or a symmetrically laminated beam, denote with a subscript &&n''
all quantities that are associated with the nth vibration mode, and insert expression (17) into
equation (7b, c). These equations then yield the following relationships associated with the
nth vibration mode.
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Multiplying equation (21) by wN
m
, where now a subscript &&m'' denotes quantities associated

with the mth vibration mode, and then integrating by parts gives
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which, after the use of the boundary conditions (9), is simpli"ed as follows:
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Similarly, multiplying equation (22) by uN
m

and then integrating by parts, gives
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Next adding equations (23) and (24), gives
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An interchange of the subscripts m and n yields a similar equation that, subtracted from
equation (25), yields
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It is noted that, this orthogonality condition has "nally been derived by virtue of the
de"nitions of Mc, Ma and Qa given by expressions (11) and (4), whereas the two #exural
modes considered were assumed to vibrate with di!erent natural frequencies.

It should be noted that, since this orthogonality condition does not depend on the
particular choice of the odd shape function involved, it is also independent of the particular
beam theory employed. In more detail, a shape function of form (14) yields the
orthogonality condition of the Bickford beam theory which is next used as the pilot beam
theory of the present investigation. Moreover, a shape function of the form (A.1) yields an
orthogonality condition for the Timoshenko beam theory that, with the use of the
transformation t"u

1
!w

,x
and equation (A.4), can easily be shown to be identical to

the corresponding condition obtained earlier in reference [8, 21, 22]. In the case of the
Euler}Bernoulli theory, however (uN "0), equation (26) yields a variationally consistent
orthogonality condition which is slightly di!erent from the well-known conventional
condition [1, 19], in the sense that it also includes the third term that appears within the
integral. The appearance of this extra term is evidently due to the contribution of the
aforementioned boundary inertia term [see equation (9b)] as well as to its counterpart that
appears in the di!erential equation of motion.

5. PURELY SHEAR VIBRATION OF SIMPLY SUPPORTED BEAMS

Downs [9] considered the free vibration of a homogeneous isotropic Timoshenko beam
having both of its ends simply supported and showed that the earlier relevant studies [8, 21]
failed to trace a certain, purely shear, vibration mode where the beam vibrates without
transverse de#ection (w"0). The existence of this vibration mode is an important discovery
in the study of the Timoshenko beam theory. This is due to the fact that associated to it,
purely shear vibration frequency is precisely at the point of separation between a lower and
an upper frequency regime, the upper regime revealing the existence of a second spectrum of
free vibration frequencies. The fact that the upper frequency regime of the Timoshenko
beam theory yields a second spectrum of frequencies was "rst claimed by Trail-Nash and
Kollar [23], though Anderson [24] also found a second set of Timoshenko beam
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frequencies. Since then (1953), however, the second-frequency spectrum of the Timoshenko
beam theory became an issue of serious controversy and debate.

In brief, some investigators [25}27] departed from the solution of the Timoshenko beam
equations, which clearly yields the so-called second-frequency spectrum at least for simply
supported beams, and revealed the physical and/or mathematical mechanisms responsible
for its formation beyond the value of the purely shear vibration frequency. On the contrary,
noting that the frequencies of this second spectrum are not always close enough to
corresponding exact elasticity predictions, Stephen [28] ignored the results of the
mathematical analysis and suggested that the observed controversy is academic unless the
second spectrum of frequencies has some physical signi"cance. Hence, he concluded that
essentially this should be judged only with reference to the extent that the values of these
frequencies agree with the corresponding exact three-dimensional elasticity results. As will
become evident in the following, the present authors are in favour of the line followed by
Stephen [28]. It will also be shown that the purely shear vibration mode in SS beams is
predictable by means of any shear deformable beam theory. It will be "nally shown that
a second-frequency spectrum, of the nature discovered in the case of the Timoshenko beam
theory, is also present in the case of the Bickford beam theory.

Under these considerations, and for the general case of the homogeneous orthotropic or
even the symmetrically laminated beam considered in the present formulation, it is next
assumed that w"0. It is then an easy matter to show that the following displacement "elds,

u
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which represent a purely shear vibration mode, satis"es equation (16) identically. Here, c is
a constant vibration amplitude whereas,
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With any odd function of z being an acceptable shape function choice, it becomes obvious
that the results presented in this section are considerably more general than those presented
in reference [9], in the sense that the purely shear mode in SS beams is predictable by means
of any shear deformable beam theory. Hence, the analytical part of reference [9] is evidently
a particular case of the present formulation.

As an application of this statement, consider the particular case of homogeneous
orthotropic beam (N"1) which will now become the main concern of the present
investigation. Upon inserting the shape function (A.1) into equations (8b) and (12g), and
accounting appropriately for the contribution of the well-known transverse shear
correction factor, K, equation (28) yields the purely shear vibration frequency parameter of
a homogeneous orthotropic Timoshenko beam in the following form:

g
T
"12A

¸

hB
2

SK
Q

55
Q

11

. (29)

It then becomes an easy matter to show that, in the more special case of a homogeneous
isotropic beam, equation (29) yields precisely the purely shear vibration frequency predicted
in reference [9].

The accurate determination of the values of shear correction factors that appear in
uniform shear deformable beam, plate and shell theories has been a major concern for
several investigators. Some of the relevant methods applied in connection with complicated
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material arrangements led to the evaluation of these factors by means of rather complicated
mathematical formulae (e.g., references [29}31]). Early investigations, which dealt with
vibrations of structural components made of homogeneous isotropic material (e.g.,
references [32}34]), determined the simple value K"n2/12 for the shear correction factors
involved by matching the approximate pure shear vibration frequencies predicted with their
corresponding exact elasticity predictions. It is further noted that this value of the shear
correction factor (n2/12:0)822467) is not far from its static counterpart [32, 35], namely
K"5/6:0)833333.

Similarly upon inserting the shape function (14) into equations (8b) and (12g), equation
(28) yields the purely shear vibration frequency parameter of a homogeneous orthotropic
Bickford beam in the following form:

g
B
"12A

¸

hB
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Q
55

Q
11

. (30)

This result clearly shows that the Bickford theory, which will be next employed as the pilot
beam theory of the present investigation, not only predicts the purely shear vibration mode,
but, most importantly, it employs correction factor values in an intrinsic manner. As far as
homogeneous isotropic and orthotropic beams are concerned, the present value of the shear
correction factor employed intrinsically, namely K"14/17:0)823529, is not far from the
one used in reference [9] (K"0)85). Moreover, it is remarkably close to (it is in fact
between) and aforementioned most commonly used relevant values, namely
n2/12:0)822467 and 5/6:0)833333, and could therefore be successfully used as an
appropriate value for the shear correction factor of the Timoshenko beam theory. However
as far as other vibration modes are concerned, there is little information available in the
literature on which the above values of K can assist the Timoshenko beam theory to
improve its frequency predictions. It is therefore suggested that a proper assessment of the
frequency predictions of either the Timoshenko theory (for di!erent values of K) or the
Bickford beam theory should be based on comparisons with corresponding results based on
appropriate exact elasticity solutions, such as the solution presented in reference [36] for
homogeneous isotropic beams.

6. FREQUENCY EQUATIONS AND CHARACTERISTIC FUNCTIONS FOR
HOMOGENEOUS BICKFORD BEAMS

Equations (8) and (12) suggest that the following relationships hold in the particular case
of a homogeneous beam (N"1) with constant material density:
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With the use of these relationships, equation (20) is further simpli"ed as follows:
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Either of the choices / (z)"0 and z yields A"0, which makes both the parameters A
1

and
A

2
singular. It is therefore of importance to note that the e!ect of these choices, / (z)"0 and

z, on equation (32) becomes clear only when the whole equation is multiplied through by A.
It is then obvious that, when either the Euler}Bernoulli or the Timoshenko beam theory is
encountered, A is nulli"ed, thus converting the, otherwise sixth order, ordinary di!erential
equation (32) into a corresponding fourth order equation.

As has already been mentioned, however, the main implications of these choices of / (z)
that correspond to the Euler}Bernoulli theory and the Timoshenko beam theory,
respectively, have already been considered elsewhere [1, 8, 11, 21] and are therefore outside
the purposes of this paper. The present study is primarily interested on non-linear choices of
/(z), namely for choices of the shape function that make AO0. It can be shown in this
respect that, for any odd (non-linear) polynomial form of / (z), A takes a negative value and,
therefore, A

1
and A

2
are also negative. Under these considerations, it is further shown in

Appendix B that the squares of all the three double roots of the algebraic auxiliary equation
of the di!erential equation (32) are real. These can be expressed in the following form:

j2
i
"k

i
#l (i"1, 2, 3), (34)

where k
i
(i"1, 2, 3) are the real functions of X2 given by equation (B.8) and

l"!1
3
(2X2#A

1
). (35)

Further developments are possible only when a speci"c non-linear form is decided for / (z).
Hence, the Bickford shape function [equation (14)] is introduced at this point and is
employed as the pilot shape function throughout the remaining of the present study. As can
then be veri"ed with the use of relationship (31), all the quantities de"ned in equation (33)
are independent of the constant material density, o. Hence, in this particular case, the
numerical value of the coe$cient of the highest (sixth) order derivative that appears in the
governing di!erential equation of the homogeneous Bickford beam theory is found to be
A"!0)007619. As was expected, A takes now a non-zero value. Its particularly small
magnitude, however, reveals that, if necessary, A can be employed as a perturbation
parameter in the case of a possible asymptotic analysis, in which the di!erential equation of
a homogeneous Timoshenko beam would be regarded as the basic approximation of the
corresponding Bickford's equation.

As far as the Bickford beam theory is concerned, it is observed that
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where g
B

is the pure shear vibration frequency parameter de"ned by equation (30).
Therefore, the general solution of the di!erential equation (32) yields: (1) for 0)u6 (g
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and (2) for u6 'g
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,
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(i"1, 2,2, 6) are arbitrary constants of integration
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In a similar fashion to the Timoshenko beam model [8], the split of all the possible values of
u6 into two regimes will yield, after the application of appropriate boundary conditions in
equations (37) and (38), two di!erent forms of the frequency equation as well as two di!erent
forms of corresponding normal modes.

With the application of appropriate boundary conditions, equations (37) or (38) yield six
homogeneous algebraic equations for the six unknown constants B

i
or C

i
respectively. For

a non-trivial solution, the determinant of the coe$cients of those equations should be equal
to zero. In each case, this condition will lead to the frequency equation, the roots of which
provide the natural vibration frequencies sought. The corresponding normal modes are
then obtained as the characteristic functions of this generalized eigenvalue problem. The
frequency equations thus obtained are presented for 10 di!erent sets of end boundary
conditions in Appendix C. These sets are formed in accordance with equation (9), by
considering all the possible combinations of the following boundary conditions applied on
either m"0 or 1:

1. Clamped end (C):

wN "wN
,m"uN "0.

2. Simply supported (S):

wN "wN
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3. Free (F):

wN
,mmm!

Da
11

Dc
11

uN
,mm#u6 2A

o
2

o
0
¸2

wN
,m!

o
11

o
0
¸2

uN B"wN
,mm"uN

,m"0. (40)

4. Guided (G):
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The characteristic functions of the Bickford beam theory were obtained with the help of the
computer package &&REDUCE'' [37] and, for the purposes of this investigation, they are
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presented in Appendix D for the 10 di!erent sets of end boundary conditions already
mentioned.

7. NUMERICAL EXAMPLES

As far as the Euler}Bernoulli theory is concerned, the auxiliary equation that
corresponds to equation (B.1) produces essentially a single root (j, say). For any given set of
end boundary conditions, the values of j that nullify the corresponding frequency equation
are always positive invariant quantities of both the thickness and the material properties of
the beam [1]. Hence, with u6 being now de"ned according to

u6 "(j¸)2, (41)

the corresponding non-dimensional Euler}Bernoulli theory frequency parameters, which
are associated with purely #exural motion only, occur as invariant quantities of both the
thickness and the material properties of the beam. Such predictions, which ignore
completely the e!ects of the transverse shear motion, do not "t with the dynamic analysis of
moderately thick or even thin but highly reinforced beams, the high reinforcement of which
essentially increases their e!ective thickness.

It is of particular interest to notice that, for thin beams having no reinforcement, both the
values of j

1
and j

2
predicted by means of equation (B.1) are almost identical and equal to

the single value of j¸ predicted through the Euler}Bernoulli theory for the same set of end
boundary conditions. On the other hand, the value of j

3
is always several orders of

magnitude higher than j
1

and j
2
, regardless of the values of the beam thickness and

sti!ness. Hence, following the suggestion of one of the referees of this paper, it can be shown
that in the limiting case in which

hP0, j
1
"j

1
"j, j

3
PR, (42)

the frequency equations (C.1)}(C.10) as well as the characteristic functions (D.1)}(D.10) are
reduced to their corresponding Euler}Bernoulli counterparts. However, upon increasing
the thickness or the Q

11
/Q

55
ratio, the values of j

1
and j

2
separate, with the latter becoming

much smaller than the former though always remaining positive. This trend is partially
illustrated in Tables 1}3 that deal with SS and CC beams only. Detailed numerical results
for other sets of end boundary conditions may be given in a future publication.

As far as SS Euler}Bernoulli beams are concerned, the values of j that yield the
corresponding values of u6 , in accordance to equation (41), are integer multiples of n [1]. In
this respect, it is of further interest to note that, although the values of j

2
decrease

substantially with increasing h/¸ or Q
11

/Q
55

, the values of j
1

remain essentially constant
and approximately equal to their corresponding j¸ values. Hence, upon replacing j¸ with
j
1
, observe further that the frequency equation (C.5) or (C.15) becomes essentially identical

to the corresponding frequency equation of the Euler}Bernoulli beam theory [1]. These
observations lead to the conclusion that it is the replacement of the simple relation (41) with
the complicated formulas (34), (35) and (B.8) that, in the case of Bickford's theory, makes the
values of u6 vary with changing h/¸ or Q

11
/Q

55
.

In order to illustrate this, consider any of the "rst six natural frequency parameters of
a SS Bickford beam, which are tabulated in Table 1 for several realistic values of h/¸ or
Q

11
/Q

55
. The bottom row of this table shows also the values of the corresponding

Euler}Bernoulli beam theory frequency parameters (EBBT), with an accuracy of eight
signi"cant "gures. As already mentioned, the exact values of these frequency parameters are



TABLE 1

¹he ,rst six frequency parameters uN of a SS beam for several values of the sti+ness and aspect
ratios

h/¸ Q
11

/Q
55

I II III IV V VI

0)15 80 5)9551039 14)351772 23)352359 33)423026 44)882196 54)111963s

50 6)8028376 17)253428 28)140848 39)813891 52)611402 66)771933
10 8)8750537 28)495280 51)171799 74)535354 89)222774 122)33138
2 9)5766252 35)442025 72)024133 114)82887 161)14376 209)46979

0)1 80 7)3833396 19)609941 32)291487 45)569857 59)786487 75)201808
50 8)0688830 23)022671 38)820213 55)000417 71)832131 89)581255
10 9)3844302 33)167490 64)114381 97)846339 132)56864 167)70455
2 9)7352061 37)480638 79)744556 132)65278 192)97629 258)36495

0)05 80 9)0147529 29)533359 53)595935 78)439765 103)59854 129)16595
50 9)3050676 32)275532 61)225539 92)090683 123)53341 155)28085
10 9)7405518 37)537721 79)875483 132)66996 192)39296 256)45752
2 9)8353358 38)940825 86)189627 149)92255 228)19082 318)97822

0)02 80 9)7159012 37)182452 78)341141 128)68654 184)58349 243)59587
50 9)7720906 37)986320 81)778474 137)51619 201)72207 271)57741
10 9)8485738 39)145455 87)169609 152)79871 234)61075 330)99783
2 9)8640905 39)390479 88)383617 156)52445 243)38015 348)41687

0)01 80 9)8304757 38)863605 85)803934 148)72981 225)36882 313)36456
50 9)8449424 39)088362 86)888767 151)94528 232)62669 327)11390
10 9)8643328 39)394295 88)402443 156)58182 243)51379 348)67844
2 9)8682248 39)456362 88)714933 157)56191 245)88340 353)53447

EBBT 9)8696044 39)478418 88)826440 157)91367 246)74011 355)30576

sThe value of the frequency parameter g
B

that corresponds to purely shear vibration [see equation (30)].
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u6 "(j¸)2"(mn)2 (m"1, 2,2). The present analysis has shown that, within an accuracy
of 12 signi"cant "gures, the corresponding values of j

1
remain always approximately equal

to mn, regardless of the value of either h/¸ or Q
11

/Q
55

. Contrary to this, the frequency
values obtained on the basis of Bickford's theory vary substantially with changing values of
h/¸ and Q

11
/Q

55
.

In more detail, Table 1 shows that, for the thinnest (h/¸"0)01) and less reinforced,
essentially isotropic beam (Q

11
/Q

55
"2), there is a remarkably good agreement between the

corresponding frequency parameters based on the Euler}Bernoulli theory and the Bickford
theory. This, however, does not proceed beyond the third signi"cant "gure for the
fundamental, the second and the fourth frequency parameters, or beyond the second
signi"cant "gure for the three remaining frequencies. As was expected on the other hand, all
the frequency parameters of Bickford's theory decrease continuously with increasing the
beam reinforcement or the beam thickness. Hence, the fundamental frequency of Bickford's
beam becomes as low as about 60% of its Euler}Bernoulli theory value for a moderately
thick (h/¸"0)15) and highly reinforced (Q

11
/Q

55
"80) beam. On the other hand, the

variation of h/¸ or Q
11

/Q
55

in#uences the higher vibration frequencies to a much higher
degree. Hence, for the same moderately thick and highly reinforced beam, the second
frequency becomes as low as 36% whereas the "fth and sixth frequencies are as low as 18
and 16% of the corresponding Euler}Bernoulli theory counterparts respectively. Finally, it
should be noted that the frequency value of the purely shear mode, which is essentially
in"nite according to the Euler}Bernoulli theory, also decreases dramatically with
increasing h/¸ or Q

11
/Q

55
. Hence, as shown in Table 1, this purely shear vibration



TABLE 2

¹he value of j
1

that corresponds to ,rst six frequencies of a CC beam for several values of the
sti+ness and aspect ratios. ¹he results indicated with a star fall into the upper frequency regime

h/¸ Q
11

/Q
55

I II III IV V VI

0)15 80 3)8200459 6)9189158 10)259381 13)551761 16)818827 20)050483*
50 3)8960789 6)8523273 10)136869 13)410880 16)681140 19)920744*
10 4)3240151 7)0730380 10)049429 13)134828 16)296565 19)479200
2 4)6276938 7)5909561 10)567298 13)546566 16)546442 19)568261

0)1 80 3)9697725 6)8411576 10)067921 13)318835 16)580017 19)821254
50 4)0940784 6)8775855 10)010724 13)213942 16)451760 19)683741
10 4)4994417 7)3324954 10)248850 13)240030 16)305864 19)420559
2 4)6806846 7)7186163 10)758629 13)786632 16)813843 19)846247

0)05 80 4)3407371 7)0958971 10)060717 13)140809 16)293822 19)476424
50 4)4491727 7)2484039 10)169643 13)187831 16)285169 19)427121
10 4)6597584 7)6665352 10)670798 13)667116 16)673453 19)699127
2 4)7169360 7)8155599 10)924717 14)024620 17)118101 20)206773

0)02 80 4)6393068 7)6173267 10)594874 13)573495 16)574789 19)606654
50 4)6713426 7)6952861 10)715217 13)722929 16)734291 19)759118
10 4)7179228 7)8187341 10)929984 14)031888 17)126822 20)216189
2 4)7278943 7)8469129 10)983436 14)117236 17)249313 20)379713

0)01 80 4)7055086 7)7846155 10)867409 13)936062 16)996076 20)051739
50 4)7145630 7)8094484 10)912646 14)004771 17)088889 20)167103
10 4)7269650 7)8443386 10)978437 14)109058 17)237236 20)363061
2 4)7295012 7)8516163 10)992518 14)132076 17)271186 20)409819

EBBT 4)7300407 7)8532046 10)995608 14)137165 17)278760 20)420352
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parameter, g
B
, has become sixth in the order of the frequency parameters of the moderately

thick (h/¸"0)15) and highly reinforced (Q
11

/Q
55
"80) SS beam.

In a similar fashion, Tables 2 and 3 show the variation of j
1

and u6 , respectively, that
correspond to the "rst six frequency parameters of a CC beam obtained on the basis of
Bickford's theory, Further, these tables also make clear that not only u6 , but also j

1
,

decreases continuously in this case with increasing the beam thickness or the material
reinforcement. It is denoted, however, that although there is a relatively moderate variation
of j

1
(Table 2), the natural frequencies of the CC Bickford beam (Table 3) can be in#uenced

by the variation of h/¸ and Q
11

/Q
55

to a much higher degree than their corresponding SS
counterparts (Table 1). Hence, the fundamental frequency of the CC Bickford beam
becomes as low as about 34% of its Euler}Bernoulli theory value in the case of the
afore-mentioned moderately thick (h/¸"0)15) and highly reinforced (Q

11
/Q

55
"80) beam.

Moreover, the second frequency of that CC Bickford beam becomes as low as 26% whereas
its "fth and sixth frequencies are as low as about 16)5 and 15% of the corresponding
Euler}Bernoulli theory counterparts respectively.

It should be noted, however that, unlike the previous SS beam case, the frequency
equation (C.1) or (C.11) of the CC Bickford's beam is dependent on the value of all three j

i
parameters (i"1, 2, 3) and is therefore remarkably di!erent than the corresponding
Euler}Bernoulli theory frequency equation [1]. It should be also noted that apart from the
values of j

1
and u6 denoted with a star in Tables 2 and 3, respectively, all the remaining

results fall into the lower frequency regime and were therefore obtained on the basis of the
"rst set of frequency equations (C.1). The fact that the results denoted with a star fall into the
upper frequency regime, and were therefore obtained on the basis of the second set of



TABLE 3

¹he ,rst six frequency parameters uN of a CC beam for several values of the sti+ness and aspect
ratios. ¹he results indicated with a star fall into the upper frequency regime

h/¸ Q
11

/Q
55

I II III IV V VI

0)15 80 7)7391457 16)107434 25)907782 36)856287 49)307952 63)380430*
50 9)2641424 19)186510 30)703829 43)132122 56)843191 71)943529*
10 15)561863 34)064502 55)787245 78)797028 102)70263 127)22911
2 20)119312 49)670003 87)047526 128)99118 173)88775 220)71378

0)1 80 10)510574 21)835026 34)948967 48)878431 63)935992 80)244267
50 12)365071 25)986978 41)802283 58)407047 75)942755 94)476308
10 18)358770 42)994119 72)799084 105)23971 139)23082 174)12323
2 21)266688 55)231139 101)11545 155)35093 215)51253 279)89198

0)05 80 16)050902 35)600165 58)593067 83)016716 108)33006 134)33304
50 17)705133 40)799042 68)449337 98)281758 129)34406 161)15307
10 21)104405 54)633693 99)779763 152)95998 211)71441 274)28739
2 22)076772 59)813922 114)76807 184)56815 267)51158 361)58431

0)02 80 20)812201 53)259645 96)239280 146)14139 200)63178 258)10507
50 21)353409 55)954363 103)43674 160)33461 224)03667 292)54658
10 22)152300 60)340253 116)49895 189)04411 276)43820 377)05007
2 22)324740 61)360631 119)82187 197)09331 292)67882 405)97743

0)01 80 21)946360 59)169823 112)84718 180)59676 260)20664 349)56554
50 22)102627 60)064306 115)64253 187)05357 272)57004 370)39921
10 22)317209 61)329682 119)74766 196)95673 292)46439 405)67397
2 22)361098 61)594129 120)62929 199)15357 297)04350 414)13005

EBBT 22)373285 61)672823 120)90339 199)85945 298)55554 416)99079
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frequency equations (C.1), did not appear to in#uence the afore-mentioned discussion in
any way at least as far as CC beams are concerned. An issue that needs further clari"cation
is the fact that the second set of SS frequency equations (C.15) introduces a second spectrum
of vibration frequencies. As already mentioned in Section 5, in accordance with the line
suggested in reference [28], the usefulness of the second-frequency branch of the Bickford
beam theory should be judged only with reference to the extent that the values of these
frequencies agree with the corresponding exact three-dimensional elasticity predictions (see,
for instance, reference [36]).

8. CONCLUSIONS

This paper is considered as a step towards the generalization of a certain but basic class of
re"ned theories that describe the plane motion of shear deformable elastic beams as well as
the construction and the documentation of their frequency equations, characteristic
functions and relevant orthogonality conditions, at least as far as plane #exural motion is
concerned. Such new sets of characteristic functions are consistent with corresponding
higher order plate or shell theories and could therefore play an important role in the
dynamic and static analysis of corresponding structural components.

In more detail, appropriate combinations of characteristic functions in two dimensions
form a natural two-dimensional functional basis, to which the unknown solution of
a relevant plate or shell boundary value problem can be expanded upon. Such a solution
can then be approached very accurately by means of an error-minimization procedure (e.g.,
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Ritz method or Galerkin approach). As far as classical plate and shell models are concerned,
such error minimization approaches have already been applied successfully (see, for
instance, references [2}5]) and, due to the orthogonality conditions that the characteristic
functions of the Euler}Bernoulli theory obey, their convergence was found to be reasonably
fast. In dealing with dynamic analyses of highly reinforced plate and shell components, the
accurate modelling of which requires the consideration of transverse shear deformation
e!ects, solution expansions in terms of the Euler}Bernoulli theory characteristic functions
appear to be inadequate. It appears therefore that, corresponding expansions in terms of the
characteristic functions of appropriate shear deformable beam theories, like the ones
considered in the investigation, might be found to be reasonable alternatives of the
orthogonal polynomial expansions that are already in use [38}41].

Thus, the proposed developments were initially based on a generalization of the relevant,
re"ned laminated beam theories (G3DOFBT) whereas purely #exural plane vibrations were
considered by con"ning G3DOFBT to the motion of symmetric laminates. With the
particular case of a homogeneous orthotropic beam being only an application of this
formulation, the remainder of the paper presented a continuation of the relevant studies
that dealt with the construction of the frequency equations, the characteristic functions and
the orthogonality conditions of the Euler}Bernoulli [1] and Timoshenko [8, 9, 11, 21]
beams subjected to di!erent sets of end boundary conditions. Further developments were,
however, possible only after the speci"cation of a particular re"ned beam theory.

Under these considerations, the homogeneous orthotropic version of the Bickford's
theory [13] was chosen to be the pilot beam theory of the study, though the derivations
presented could be developed in a similar fashion for other shear deformable theories of this
nature (e.g., references 14, 15, 16]). The main analytical complication that arises in re"ned
shear deformable beam model is due to the corresponding auxiliary algebraic equation (B.1)
which, unlike its fourth-degree counterpart arising in either the Euler}Bernoulli theory or
the Timoshenko beam theory, is of the sixth degree. As a result, the roots of this auxiliary
equation are eventually obtained by means of three characteristic values, j

i
(i"1, 2, 3),

whereas the corresponding equation of the Timoshenko beam needs the determination of
two such characteristic values only and that of the even simpler Euler}Bernoulli theory just
one.

It is of particular interest to notice that, as the present generalized formulation revealed,
the existence of purely shear vibration modes in SS beams (that is, #exural modes without
transverse de#ection [9]), are predicted by means of any shear deformable beam theory.
Moreover, regardless of the shear deformable theory considered, the corresponding purely
shear vibration frequency, g, splits the whole range of possible natural vibration frequencies
into a &&lower'' and a &&upper'' frequencies regime, each one of which has di!erent sets of
frequency and normal mode equations. Hence, the corresponding observations detailed in
reference [8], for the Timoshenko beam, and in this investigation for the Bickford beam,
become particular cases of this more general statement. Moreover, comparisons of the
approximate pure shear vibration frequencies predicted with their corresponding exact
elasticity predictions revealed that, unlike the Timoshenko beam theory, the Bickford beam
theory is essentially capable of employing values of an appropriate transverse shear
correction factor in an intrinsic manner.

As far as the homogeneous orthotropic version of the Bickford beam theory is concerned,
the identi"cation of the border, g

B
, between its &&lower'' and &&upper'' regime of natural

frequency predictions, allowed the analytical construction of both the frequency and the
corresponding normal mode equations for 10 di!erent sets of end boundary conditions. It
should be noted, however, that the vast majority of the preliminary numerical results
presented and discussed in this paper dealt with natural frequencies that lie into the &&lower''
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frequency regime of SS and CC beams. These were referred to as the "rst six frequencies of
SS and CC Bickford beams and, for several realistic values of h/¸ or Q

11
/Q

55
, were

compared with corresponding Euler}Bernoulli theory results that, being well documented
in the literature [1], are known invariant quantities of the beam geometrical and material
properties. The very few times that the comparisons carried out required the use of the
second set of frequency equations referred to the sixth frequency of particularly thick and
highly reinforced CC Bickford beams.

It was also noted that the frequency value of the purely shear mode, g
B
, which is

essentially in"nite according to the Euler}Bernoulli theory, is decreasing so dramatically
with increasing h/¸ or Q

11
/Q

55
that has become sixth in the order of the frequency

parameters of a moderately thick (h/¸"0)15) and highly reinforced (Q
11

/Q
55
"80) SS

beam. However, this and other advanced relevant problems (as the fact, for instance, that
the second set of SS frequency equations (C.15) appears to introduce another branch of
vibration frequencies), are issues that need further clari"cation. Such problems can be
resolved by comparing with corresponding results based on an appropriate plane stress
elasticity solution [36] and they evidently include further numerical studies. They were
therefore considered to be beyond the scope of this investigation and are left for future
research investigations.
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APPENDIX A

With the introduction of the Timoshenko shape function, namely

/ (z)"z, (A.1)

the transformation t"u
1
!w

,x
brings the in-plane displacement approximation (1a) into

the familiar relevant form,

;(x, y, z, t)"u(x, t)#zt(x, t), (A.2)

whereas,

Nc"N"P
h@2

~h@2

p
x
dz, Mc"Ma"M"P

h@2

~h@2

p
x
zdz, Qa"Q"P

h@2
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q
xz

dz, (A.3)

and

o
1
"o

01
"P

h@2

~h@2

ozdz, o
2
"o

11
"o

02
"P

h@2

~h@2

oz2dz. (A.4)

As a result of these simpli"cations, the equations of motion (7) of the Timoshenko-type
laminated beam theory are obtained in the following conventional form:

N
,x
"(o

0
u#o

1
t)

, tt
,

M
,xx

"(o
0
w#o

2
t
,x
#o

1
u
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)
, tt

, (A.5)

M
,x
!Q"(o

1
u#o

2
t)

, tt
,

Moreover, with the use of equation (A.5c), the essential part of the boundary condition (9b)
is transformed into the following:

Q prescribed, (A.6)

which agrees with previously published literature [42, 43].

APPENDIX B

The auxiliary equation of the di!erential equation (32) is as follows:

j6#(2X2#A
1
)j4#(X2#A

1
#A

2
)X2j2#(A

2
X2!kA

1
)X2"0. (B.1)

With the help of the following transformation.

j2"k!1
3
(2X2#A

1
), (B.2)



SHEAR DEFORMABLE BEAM THEORIES 235
equation (B.1) yields

k3#1
3
[!(A

1
#X2)2#(A

1
#3A
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)X2]k# 2

27
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1
#X2)3

! 1
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)X2]X2"0. (B.3)

Since A
1
(0 and A

2
(0, the coe$cient of k in equation (B.3) is clearly negative. Since it can

be further shown that the coe$cient of k0 is also negative, equation (B.3) can be reduced to
the following simpli"ed form:

k3!A
s2#r2
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1@3

k#
r

3J3
"0, (B.4)

where
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According to the theory of cubic algebraic equations [44], the value of the quantity

h"!

4r2

27(r2#s2)
, (B.6)

dictates the form of the roots of equation (B.4). Since in the present case it is clearly

! 4
27
(h(0, (B.7)

equation (B.4) has three real roots [44] which, after some algebraic manipulations, can be
expressed as follows:
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rBD.
Hence, equation (B.2) returns real values to the squares of all the three double roots of the
algebraic equation (B.1), which are given in accordance with equations (34) and (35).

APPENDIX C

The frequency equations obtained for 0)u6 (g
B
, are as follows:

(a) Clamped}clamped beam (CC):
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(b) Clamped}simply supported beam (CS):
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(c) Clamped}free beam (CF):
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(d) Clamped}guided beam (CG):
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(e) Simply supported}simply supported beam (SS):
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(f ) Simply supported}free beam (SF):
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(g) Simply supported}guided beam (SG):
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(h) Free}free beam (FF):

P
2
P
3

j2
2
j2
3

sin j
1
(1!cosh j

2
cosh j

3
)!

P
1
P
3

j2
1
j2
3

sinh j
2
(1!cos j

1
cosh j

3
)

#

P
1
P
2

j2
1
j2
2

sinhj
3
(1!cos j

1
cosh j

2
)#

1

2 A!
P2
1

j4
1

#

P2
2

j4
2

#

P2
3

j4
3
B sinj

1
sinh j

2
sinhj

3
"0.

(C.8)

(i) Free}guided beam (FG):
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( j) Guided}guided beam (GG):
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Similarly, the frequency equations obtained for u6 'g
B
, are as follows.

(a) Clamped}clamped beam (CC):
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(b) Clamped}simply supported beam (CS):
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(c) Clamped}free beam (CF):
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(d) Clamped}guided beam (CG):

S
1
cot j

1
!S

2
cot j

4
#S

3
coth j

3
"0. (C.14)

(e) Simply supported}simply supported (SS):
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(f ) Simply supported}free beam (SF):
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(g) Simply supported}guided beam (SG):

cos j
1
cos j

4
"0. (C.17)

(h) Free}free beam (FF):
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(i) Free}guided beam (FG):
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( j) Guided}guided beam (GG):
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APPENDIX D

In order to provide expressions for the characteristic functions that correspond to the
lower frequency regime, 0)u6 (g

B
, it is convenient to de"ne the following auxiliary

functions:
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After these de"nitions, these characteristic functions are given as follows:
(a) Clamped}clamped beam (CC):
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(b) Clamped}simply supported beam (CS):
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(c) Clamped}free beam (CF):
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(d) Clamped}guided beam (CG):
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(e) Simply supported}simply supported beam (SS):

wN "B sin j
1
m, uN "BR

1
cos j

1
m. (D.5)



240 K. P. SOLDATOS AND C. SOPHOCLEOUS
(f ) Simply supported}free beam (SF):
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(g) Simply supported}guided beam (SG):
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(i) Free}guided beam (FG):
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( j) Guided}guided beam (GG):
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Similarly, in order to provide expressions for the characteristic functions that correspond
to the upper frequency regime, u6 'g
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After these de"nitions, these characteristic functions are given as follows:
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(b) Clamped}simply supported beam (CS):
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(c) Clamped}free beam (CF):
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(d) Clamped}guided beam (CG):
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(e) Simply supported}simply supported beam (SS):
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(f ) Simply supported}free beam (SF):
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(g) Simply supported}guided beam (SG):

wN "C sin j
1
m, uN "CR

1
cos j

1
m.

or (D.17)

wN "C sin j
4
m, uN "CR

4
cos j

4
m.

(h) Free}free beam (FF):
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(i) Free}guided beam (FG):

wN "CC
S
1

j
1
cos j

1

cos j
1
(m!1)!

S
2

j
4
cos j

4

cos j
4
(m!1)#

S
3

j
3
cosh j

3

cosh j
3
(m!1)D,

uN "CC!
R

1
S
1

j
1
cos j

1

sin j
1
(m!1)#

R
4
S
2

j
4
cosh j

2

sin j
4
(m!1)#

R
3
S
3

j
3
sinh j

3

sinh j
3
(m!1)D.

(D.19)

( j) Guided}guided beam (GG):
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APPENDIX E: NOMENCLATURE

A
1
, A

2
, A, k, X quantities de"ned by equation (33)

Ac
11

, Bc
11

, Ba
11

, Dc
11

, Da
11

, Daa
11

, Aa
55

rigidities de"ned by equation (12)
ec
x
, ea

xz
, kc

x
, ka

x
strains and curvatures acting on the beam middle-axis

h thickness of the beam
K transverse shear correction factor
¸ length of the beam
Mc, Ma moment resultants
Nc, Qa force resultants
Q(k)

11
, Q(k)

55
reduced elastic sti!nesses

R
i

quantities de"ned by equation (39)
;,= displacement components
u, w, u

1
displacement functions

uN , wN non-dimensional variables de"ned by equation (17)
x, y, z Cartesian co-ordinate parameters
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e
x
, c

xz
strain components

g purely shear frequency parameter
g
T

Timoshenko theory shear frequency parameter
g
B

Bickford theory shear frequency parameter
j
1
, j

2
, j

3
characteristic roots de"ned by equations (B.2) and (B.8)

l quantity de"ned by equation (35)
m non-dimensional variable de"ned by equation (17)
o
0
, o

1
, o

2
, o

01
, o

02
, o

11
inertial coe$cients de"ned by equation (8)

p
x
, q

xz
stress components

/(z) shape function
u frequency
u6 non-dimensional frequency parameter
a denotes the additional quantities due to the choice /@ (0)"1
c denoted the quantities associated with E}B theory
k denotes the kth layer
( )@ denotes the ordinary di!erentiation
( )

, i
denotes partial di!erentiation
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